Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.

نویسندگان

  • Eric R Cheek
  • Vladimir G Fast
چکیده

Defibrillation shocks induce nonlinear changes of transmembrane potential (DeltaVm) that determine the outcome of defibrillation. As shown earlier, strong shocks applied during action potential plateau cause nonmonotonic negative DeltaVm, where an initial hyperpolarization is followed by Vm shift to a more positive level. The biphasic negative DeltaVm can be attributable to (1) an inward ionic current or (2) membrane electroporation. These hypotheses were tested in cell cultures by measuring the effects of ionic channel blockers on DeltaVm and measuring uptake of membrane-impermeable dye. Experiments were performed in cell strands (width approximately 0.8 mm) produced using a technique of patterned cell growth. Uniform-field shocks were applied during the action potential plateau, and DeltaVm was measured by optical mapping. Shock-induced negative DeltaVm exhibited a biphasic shape starting at a shock strength of approximately 15 V/cm when estimated peak DeltaV-m was approximately -180 mV; positive DeltaVm remained monophasic. Application of a series of shocks with a strength of 23+/-1 V/cm resulted in uptake of membrane-impermeable dye propidium iodide. Dye uptake was restricted to the anodal side of strands with the largest negative DeltaVm, indicating the occurrence of membrane electroporation at these locations. The occurrence of biphasic negative DeltaVm was also paralleled with after-shock elevation of diastolic Vm. Inhibition of I(f) and I(K1) currents that are active at large negative potentials by CsCl and BaCl2, respectively, did not affect DeltaVm, indicating that these currents were not responsible for biphasic DeltaVm. These results provide evidence that the biphasic shape of DeltaVm at sites of shock-induced hyperpolarization is caused by membrane electroporation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.

The outcome of defibrillation shocks is determined by the nonlinear transmembrane potential (DeltaVm) response induced by a strong external electrical field in cardiac cells. We investigated the contribution of electroporation to DeltaVm transients during high-intensity shocks using optical mapping. Rectangular and ramp stimuli (10-20 ms) of different polarities and intensities were applied to ...

متن کامل

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

Effect of electroporation on cardiac electrophysiology.

Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells, resulting in resynchronization of electrical activity in the heart. If shock-induced transmembrane potentials are large enough, they can cause transient tissue damage due to electropora...

متن کامل

Electroporation of the heart.

Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells resulting in resynchronization of electrical activity in the heart. If shock-induced changes in transmembrane potential are large enough, they can cause transient tissue damage due to el...

متن کامل

Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes.

Organization of cardiac tissue into cell strands and layers has been implicated in changes of transmembrane potential (DeltaV(m)) during defibrillation. To determine the shock-induced DeltaV(m) in such structures, cell strands of variable width [strand width (SW) = 0.15-2 mm] were grown in culture. Uniform-field shocks with variable strength [shock strength (SS) = 2-50 V/cm] were applied across...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2004